Synthesis and Spectroscopic Characterization of Hexakis(carbonyl)iron(II) Undecafluorodiantimonate(V), [Fe(CO)₆][Sb₂F₁₁]₂

Bianca Bley,[†] Helge Willner,^{*,†} and Friedhelm Aubke^{*,‡}

Institut für Anorganische Chemie der Universität, Callinstrasse 9, D-30167 Hannover, Germany, and Department of Chemistry, The University of British Columbia, Vancouver B. C. Canada V6T 1Z1

Received July 10, 1996[®]

Oxidative carbonylation of $Fe(CO)_5$ in liquid SbF₅ and a CO atmosphere, with either AsF₅ or Cl₂ as external oxidizing agents, produces $[Fe(CO)_6][Sb_2F_{11}]_2$ in very high yield. The resulting off-white solid material is thermally stable (above 200 °C). The homoleptic carbonyl cation [Fe(CO)₆]²⁺, the first of its type formed by a 3d-metal, is isostructural with $[Ru(CO)_6]^{2+}$ and $[Os(CO)_6]^{2+}$ which are obtained by reductive carbonylation of $M(SO_3F)_3$, M = Ru or Os. The stretching force constant of 19.82×10^2 N m⁻¹ and $\bar{\nu}(CO)_{av}$ of 2215.5 cm⁻¹ suggest significantly reduced π -back-bonding. The single line ⁵⁷Fe Mössbauer spectrum at $\delta = -0.001(6)$ mm s⁻¹ relative to α -Fe is consistent with a regular octahedral structure and a ${}^{1}A_{1g}$ groundstate for $[Fe(CO)_{6}]^{2+}$. The possible existence of $[Fe(CO)_6]^{3+}$ formed by oxidation with Cl₂ is discussed.

Introduction

Dipositive homoleptic metal carbonyl cations for a 3d-series metal have so far remained unknown. We want to report at this time on the synthesis and the spectroscopic characterization of hexakis(carbonyl)iron(II) undecafluorodiantimonate(V), [Fe- $(CO)_6$ [Sb₂F₁₁]₂. The octahedral [Fe(CO)₆]²⁺ is the first dipositive homoleptic carbonyl cation formed by a 3d-metal. The thermally stable (>200 °C) salt [Fe(CO)₆][Sb₂F₁₁]₂ is generated by a new synthetic approach, the oxidative carbonylation of Fe-(CO)₅ in liquid antimony(V) fluoride, SbF₅. Its synthesis complements an earlier report¹ on the preparation of $[M(CO)_6]$ - $[Sb_2F_{11}]_2$, M = Ru or Os, and allows a spectroscopic comparison of all three $[M(CO)_6]^{2+}$ cations formed by the group 8 metals iron, ruthenium, and osmium.

Results and Discussion

Even though the complex cyanide anion $[Fe(CN)_6]^{4-}$, found in K₄[Fe(CN)₆]·3H₂O, has been known for a very long time² and extensively studied,³ the isoelectronic homoleptic carbonyl cation $[Fe(CO)_6]^{2+}$ has remained elusive, in spite of various attempts at its synthesis. Early claims of its formation by bromide abstraction from Fe(CO)₄Br₂ with the Lewis acid AlBr₃ at CO pressures of 300-400 atm⁴ or by the postulated amine catalyzed disproportionation of Fe(CO)₅ to [Fe(CO)₄]²⁻ and [Fe- $(CO)_6$ ^{2+ 5} have subsequently been found in error.⁶

A recent, very promising approach, the reductive carbonylation in liquid SbF₅,⁷ is found to be successful in the synthesis of the congeners $[M(CO)_6][Sb_2F_{11}]_2$, M = Ru or Os, from the

- (5) Sternberg, H. W.; Friedel, A. R.; Shufler, S. L.; Wender, I. J. Am. Chem. Soc. 1955, 77, 2675.
- (6) Hieber, W.; Frey, V.; John, P. Chem. Ber. 1967, 100, 1961.

corresponding fluorosulfates, M(SO₃F)₃, according to

$$2M(SO_{3}F)_{3} + 16SbF_{5} + 13CO \xrightarrow{1 \text{ atm of CO, SbF_{5}}}{25-70 \text{ °C}}$$
$$2[M(CO)_{6}][Sb_{2}F_{11}]_{2} + CO_{2} + S_{2}O_{5}F_{2} + 4Sb_{2}F_{9}(SO_{3}F) (1)$$
$$M = Ru \text{ or } Os$$

But the method fails for FeX_3 (X = Cl or SO₃F), and polymeric $Fe[SbF_6]_2$, which has a layer structure,⁸ is formed instead.

In order to avoid the formation of $Fe[SbF_6]_2$, the oxidative carbonylation of Fe(CO)₅ is attempted, with the assumption that most CO ligands will remain bound to Fe. It was found that by the use of AsF₅ as oxidizing agent, the reaction proceeds in a straightforward manner according to

$$Fe(CO)_{5} + 5SbF_{5} + AsF_{5} + CO \xrightarrow[60-90 \circ C]{1 \text{ atm of CO, }SbF_{5}}} [Fe(CO)_{6}][Sb_{2}F_{11}]_{2} + AsF_{3} \cdot SbF_{5} (2)$$

AsF₃ obtained as byproduct is complexed by SbF₅ to a white, nonvolatile solid, of the suggested composition AsF₃·SbF₅.^{9a} Removal from the reaction mixture requires repeated washing with liquid SO₂. The residue obtained after removal of all SO₂ from the liquid phase is identified by IR spectroscopy as SO₂·SbF₅^{9b} which suggests a displacement reaction during washing. The product $[Fe(CO)_6][Sb_2F_{11}]_2$ is an off-white, moisture-sensitive solid of surprising thermal stability, at least up to 200 °C. The composition of the isolated product is determined by the mass balance of the reaction and by microanalysis.

Interesting is the outcome of synthetic reactions with Cl₂ as external oxidizing agent. $[Fe(CO)_6]^{2+}$ is formed according to

^{*} Authors to whom correspondence should be addressed.

[†] Universität Hannover.

[‡] The University of British Columbia.

[®] Abstract published in Advance ACS Abstracts, December 15, 1996.

⁽¹⁾ Wang, C.; Bley, B.; Balzer-Jöllenbeck, G.; Lewis, A. R.; Siu, S. C.; Willner, H.; Aubke, F. J. Chem. Soc., Chem. Commun. 1995, 2071. (2) Macquer, P. J. Mem. Math. Phys. 1752, 2, 87.

^{(3) (}a) Chadwick, B. M.; Sharpe, A. G. Adv. Inorg. Chem. Radiochem. 1966, 8, 83. (b) Sharpe, A. G. The Chemistry of Cyano Complexes of Transition Metals; Academic Press: New York, 1976.

⁽⁴⁾ Hieber, W.; Kruck, T. Angew. Chem. 1961, 73, 580.

⁽⁷⁾ Wang, C.; Siu, S. C.; Hwang, G.; Bley, B.; Bodenbinder, M.; Bach, C.; Willner, H.; Aubke, F. Eur. J. Inorg. Solid State Chem. 1996, 33, 917.

⁽⁸⁾ Gantar, D.; Leban, I.; Frlec, B.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1987, 2379.

⁽a) Birchall, T.; Dean, P. A. W.; Valle, B. D.; Gillespie, R. J. Can. J. Chem. 1973, 51, 667. (b) Moore, J. W.; Baird, H. W.; Miller, H. B. J. Am. Chem. Soc. 1968, 90, 1358.

$$Fe(CO)_{5} + Cl_{2} + CO + 6SbF_{5} \xrightarrow{1 \text{ atm of CO}} [Fe(CO)_{6}][Sb_{2}F_{11}]_{2} + 2SbF_{4}Cl (3)$$

but in addition the mass balance of the reaction and a sharp IR band at 2256 cm⁻¹, whose intensity increases with increasing Cl₂ excess over the stoichiometrically required amount, suggest the formation of [Fe(CO)₆]³⁺. Support comes from the recently reported $[Ir(CO)_6][Sb_2F_{11}]_3^{10}$ where the IR asymmetric CO stretch (f_{1u}) is observed at 2254 cm⁻¹. Attempts to obtain a pure sample of $[Fe(CO)_6][Sb_2F_{11}]_3$ and to characterize the cation $[Fe(CO)_6]^{3+}$ more fully are currently underway.

The oxidative carbonylation to generate homoleptic carbonyl cations has a precedent in the oxidation of gold by UF₆ in anhydrous HF and in the presence of CO to give [Au(CO)₂]-[UF₆].¹¹ The oxidative carbonylation in liquid SbF₅, with the help of external oxidizing agents as described here, increases the potential use of antimony(V) fluoride in carbonylation reactions.

The IR and Raman spectra of $[Fe(CO)_6][Sb_2F_{11}]_2$ are shown in Figure 1, and all vibrational data of the cation are compared with the spectra of $[M(CO)_6]^{2+}$, M = Ru or Os,¹ in Table 1 together with the CO stretching force constants, $f_{\rm CO}$. The bands of the [Sb₂F₁₁]⁻ anion, not listed here, are very similar to those found in $[Hg(CO)_2][Sb_2F_{11}]_2$.¹² The tentative assignments are supported by the spectra of the ¹³CO isotopomers.

It is more difficult to obtain the isotopomer $[Fe(^{13}CO)_6]$ - $[Sb_2F_{11}]_2$ than $[M(^{13}CO)_6][Sb_2F_{11}]_2$, M = Ru or Os (see eq 1). The method chosen is the initial 13 CO enrichment of Fe(CO)₅ with Na[BH₄] as exchange promotor¹³ and the use of ¹³CO in the subsequent oxidative carbonylation. In the resulting mixture of isotopomers, the ¹³CO stretching modes of $[Fe(^{13}CO)_6]^{2+}$ are identified by comparison to the spectra of $[M(^{13}CO)_6]^{2+}$, M = Ru or Os.1

As can be seen in Table 1, vibrational spectra for the three $[M(CO)_6]^{2+}$ cations, M = Fe, Ru, or Os, are extremely similar in respect to band positions and intensities in particular in the CO stretching region. The three cations are evidently octahedral and the CO stretching force constant f_{CO} of 19.82×10^2 N m⁻¹ for $[Fe(CO)_6]^{2+}$, obtained by the Cotton-Kraihanzel method,¹⁴ suggests only insignificant metal to CO π -back-bonding.¹⁵ The CO stretching force constant in $[Ru(CO)_6]^{2+}$ has the same value, while f_{CO} in $[Os(CO)_6]^{2+}$ is with 19.76 × 10² N m⁻¹ slightly smaller.1

The observed decrease of $\delta(^{13}C)$ NMR chemical shifts from 179 ppm for $[Fe(CO)_6]^{2+}$ over 166 to 147 ppm for the corresponding Ru and Os hexacarbonyl cations is expected, since for the neutral hexacarbonyls $M(CO)_6$, M = Cr, Mo, or W, $\delta(^{13}C)$ decreases in a similar manner from 212 ppm over 204 to 192 ppm,¹⁶ while the force constants f_{CO} for all three molecules are nearly identical.¹⁷

- (10) Bach, C.; Willner, H.; Wang, C.; Rettig, S. J.; Trotter, J.; Aubke, F. Angew. Chem. 1996, 108, 2104; Angew. Chem., Int. Ed. Engl. 1996, 35. 1974.
- (11) Adelhelm, M.; Bacher, W.; Höhne, E. G.; Jacob, E. Chem. Ber. 1991, 124, 1559.
- (12) Bodenbinder, M.; Balzer-Jöllenbeck, G.; Willner, H.; Batchelor, R. J.; Einstein, F. W. B.; Wang, C.; Aubke, F. Inorg. Chem. 1996, 35, 82
- (13) Bricker, J. C.; Payne, M. W.; Shore, S. G. Organometallics 1987, 6, 2545
- (14) Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432. (15) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.;
- Aubke, F. J. Am. Chem. Soc. 1992, 114, 8972. (16) Mann, B. E. J. Chem. Soc., Dalton Trans. 1973, 2012.
- (17) Jones, L. H. Inorganic Vibrational Spectroscopy; Marcel Dekker: New York, Vol. 1, 1971.

Figure 1. IR (a) and Raman (b) spectra of $[Fe(CO)_6][Sb_2F_{11}]_2$. Cation bands are marked.

Table 1. Vibrational Data in cm⁻¹ and CO Stretching Force Constants f_{CO} in N m⁻¹ × 10² for [M(CO)₆][Sb₂F₁₁]₂ (M = Fe, Ru, Os)

$[Fe(CO)_6] - \\ [Sb_2F_{11}]_2$		$[Ru(CO)_6] - \\ [Sb_2F_{11}]_2$		$[Os(CO)_6] - \\ [Sb_2F_{11}]_2$			
IR intens	Raman intens	IR intens	Raman intens	IR intens	Raman intens		assignment ^b
	2241 s 2220 vs		2254 ^a s 2222 ^a vs		2259 ^a s 2218 ^a vs	$ \frac{\nu_1}{\nu_3} $	$\begin{array}{l} A_{1g}\left[M(CO_{)6}\right] \\ E_{g}\left[M(CO)_{6}\right] \end{array}$
2204 s	2190 m	2199 ^a s	2203ª s	2190 ^a s	2206ª s	v_6	$F_{1u}[M(CO)_6]$
	2150 m 2169 s		2172^a vs		2166 ^{<i>a</i>} vs	ν_{3}'	$E_{g}[M(^{13}CO)_{6}]$
2155 s		2149 ^a s		2141 ^a s		ν_6'	$F_{1u}[M(^{13}CO)_6]$
558 m		557 s		562 s		ν_7	$F_{1u}[M(CO)_6]$
	348 w		382 vw			ν_4	$E_g [M(CO)_6]$
338 w		336 m		346 m		ν_9	$F_{1u}[M(CO)_6]$
	138 m		131 s		132 s	v_{11}	$F_{2g}\left[M(CO)_6\right]$
Stretching Force Constants f_{CO}							
]	M = Fe		M = Ru			M = Os	
	19.82		19.82				19.76

^a Reference 1. ^b Numbering of fundamentals from ref 17.

The ⁵⁷Fe Mössbauer spectrum of [Fe(CO)₆][Sb₂F₁₁]₂ at 80 and 200 K shows a single sharp line (δ -0.001(6) mm s⁻¹ relative to α -Fe at room temperature, $\Gamma = 0.258(9)$ mm s⁻¹ at 80 K). This observation suggests (a) the ground state of Fe^{II} is ${}^{1}A_{1g}$ corresponding to a 3d⁶ low spin configuration, (b) the environment around Fe is strictly octahedral, and (c) the electronic environment at the nucleus is slightly different from that of $K_4[Fe(CN)_6]$ ·3H₂O which has an isomershift of -0.042 $mm s^{-1}.^{18}$

Experimental Section

(a) Chemicals. Antimony(V) fluoride was obtained from Ato-Chem, North America, and purified by repeated distillation as described by us.7,12 Fe(CO)₅ was obtained from BASF (purity not stated) and used without further purification. Cl2 (Baker Chemiekalien Gross-Gerau) and SO₂ (Matheson, Europe) were obtained from commercial sources. Sulfur dioxide was dried over P4O10. AsF5 was obtained by direct fluorination of elemental arsenic according to a literature method.¹⁹ AsF₅ was stored in preconditioned metal cylinders.

(19) Ruff, O.; Braida, A.; Bretschneider, O.; Menzel, W.; Plaut, H. Z. Anorg. Allg. Chem. 1932, 206, 52.

⁽¹⁸⁾ Danon, J. In Chemical Applications of Mössbauer Spectroscopy; Goldanskii, V. I., Herber, R. H., Eds.; Academic Press: New York, 1968; p 160.

(b) Instrumentation and Equipment. Our equipment to obtain FT-IR, FT-Raman, and ¹³C NMR-MAS spectra of solid samples has recently been described.¹² Also described is a two-part reaction flask, used in the purification of $[Fe(CO)_6][Sb_2F_{11}]_2$ by washing and decanting with liquid SO₂ to remove AsF₃•SbF₅.¹²

(c) Synthetic Reactions. All synthetic reactions were carried out in glass reactors (about 60 mL volume) fitted with Teflon stem valves (Young, London, U.K.) and Teflon-coated stirring bars. Gaseous and volatile reagents and products were measured in a vacuum line of known volume. Pressure measurements were made with a Setra capacity manometer, Type 280E (Setra Instruments, Acton, MA). Solid materials were manipulated inside an evacuable box (Mecaplex, Grenchen, Switzerland) filled with N₂.

(i) **Preparation of [Fe(CO)₆][Sb₂F₁₁]₂ with AsF₅.** A reactor was charged with 122 mg (0.6 mmol) of Fe(CO)₅. After the reactor was cooled to liquid N₂ temperature, 106 mg (0.6 mmol) of AsF₅, 1.4 g (7.3 mmol) of SbF₅, and 1.9 mmol CO were added by transfer in vacuo. The reaction mixture was allowed to warm to room temperature and stirred. The initial yellow color vanished within 2 h. After the volatiles were removed in vacuo, 1.14 g of an off-white solid remained. The byproduct AsF₃·SbF₅^{9a} was removed by repeated washing with SO₂.

(ii) Preparation of $[Fe(CO)_6][Sb_2F_{11}]_2$ with Cl₂. A reactor was charged with 71 mg (0.36 mmol) of Fe(CO)₅. Without warming it to room temperature, 1.4 g (7.3 mmol) of SbF₅, 0.36 mmol of Cl₂, and 2.3 mmol of CO were added. After warming it to room temperature, the yellow reaction mixture was stirred for 1 h. The initial color had vanished. After all volatiles were removed, 0.46 g of an off-white solid remained. The weight was 12.9% higher than calculated for $[Fe(CO)_6][Sb_2F_{11}]_2$, possibly on account of incomplete SbF₅ removal.

 $[Fe(CO)_6][Sb_2F_{11}]_2$ is a white, extremely moisture-sensitive solid, which does not decompose when heated in a sealed tube to 200 °C. Anal. Calcd for C₆O₆F₂₂FeSb₄: C, 6.4; Fe, 4.9; Sb, 43.1. Found: C, 5.4; Fe, 4.2; Sb, 42.7. The sample for analysis was prepared by method (i).

Conclusion

With the synthesis and spectroscopic characterization of thermally stable [Fe(CO)₆][Sb₂F₁₁]₂ reported here, the existence range of predominantly σ -bonded, homoleptic carbonyl cations extends now to the middle of the 3d-transition series. Previously only unipositive carbonyl cations are known for 3d metals. For Cu(I) (d¹⁰) the existence of cations of the type [Cu(CO)_n]⁺, with n = 1, 2, or 3, has been suggested.^{20,21} The isoelectronic cation [Mn(CO)₆]⁺, obtained as [AlCl₄]⁻ salt, is known since 1961,^{22a} but the $\bar{\nu}$ (CO)_{av} of 2121 cm⁻¹ ^{22b} indicates some degree of π -back-donation compared to $\bar{\nu}$ (CO)_{av} of 2216 cm⁻¹ for [Fe(CO)₆]²⁺. The high thermal stability of [Fe(CO)₆][Sb₂F₁₁] underscores once again the preeminent and unique role of [Sb₂F₁₁]⁻ as a counteranion^{12,23} for homoleptic metal carbonyl cations.

Acknowledgment. Financial support by the Deutsche Forschungsgemeinschaft (DFG) for this project is gratefully acknowledged. B.B. thanks the Fonds der Chemischen Industrie for a scholarship and F.A. is grateful to the Alexander v. Humboldt Foundation for a Research Award. We thank Mr. P. Borda (UBC) and Ms. H. Czichos (University of Hannover) for microanalysis and Prof. K. Wieghardt and Dr. E. Bill, Max-Planck-Institut für Strahlenchemie, Mülheim, Germany, for recording the ⁵⁷Fe Mössbauer spectrum of [Fe(CO)₆][Sb₂F₁₁]₂.

IC9608105

- (20) Desjardins, C. D.; Edwards, D. B.; Passmore, J. Can. J. Chem. 1979, 57, 2714.
- (21) Rack, J. J.; Webb, J. D.; Strauss, S. H. Inorg. Chem. 1996, 35, 277 and references therein.
- (22) (a) Fischer, E. O.; Fichtel, K.; Öfele, K. Chem. Ber. 1961, 94, 1200.
 (b) McLean, R. A. N. Can. J. Chem. 1974, 52, 213.
- (23) Zhang, D.; Rettig, S. J.; Trotter, J.; Aubke, F. *Inorg. Chem.* **1996**, *35*, 6113.