Synthesis and Spectroscopic Characterization of Hexakis(carbonyl)iron(II) Undecafluorodiantimonate(V), $[Fe(CO)_6][Sb_2F_{11}]_2$

Bianca Bley,† Helge Willner,*,† and Friedhelm Aubke*,‡

Institut für Anorganische Chemie der Universität, Callinstrasse 9, D-30167 Hannover, Germany, and Department of Chemistry, The University of British Columbia, Vancouver B. C. Canada V6T 1Z1

Received July 10, 1996[®]

Oxidative carbonylation of Fe(CO)₅ in liquid SbF₅ and a CO atmosphere, with either AsF₅ or Cl₂ as external oxidizing agents, produces $[Fe(CO)_6][Sb_2F_{11}]_2$ in very high yield. The resulting off-white solid material is thermally stable (above 200 °C). The homoleptic carbonyl cation $[Fe(CO)_6]^{2+}$, the first of its type formed by a 3d-metal, is isostructural with $[Ru(CO)_6]^{2+}$ and $[Os(CO)_6]^{2+}$ which are obtained by reductive carbonylation of M(SO₃F)₃, M = Ru or Os. The stretching force constant of 19.82 × 10² N m⁻¹ and \bar{v} (CO)_{av} of 2215.5 cm⁻¹ suggest
significantly reduced *π*-back-bonding. The single line ⁵⁷Fe Mössbauer spectrum at $\delta = -0.001(6)$ mm s⁻ significantly reduced π -back-bonding. The single line ⁵⁷Fe Mössbauer spectrum at $\delta = -0.001(6)$ mm s⁻¹ relative to α -Fe is consistent with a regular octahedral structure and a ¹A_{1g} groundstate for [Fe(CO)₆]²⁺. The possible existence of $[Fe(CO)₆]^{3+}$ formed by oxidation with Cl₂ is discussed.

Introduction

Dipositive homoleptic metal carbonyl cations for a 3d-series metal have so far remained unknown. We want to report at this time on the synthesis and the spectroscopic characterization of hexakis(carbonyl)iron(II) undecafluorodiantimonate(V), [Fe- $(CO)_{6}$ [Sb₂F₁₁]₂. The octahedral [Fe(CO)₆]²⁺ is the first dipositive homoleptic carbonyl cation formed by a 3d-metal. The thermally stable (>200 °C) salt [Fe(CO)₆][Sb₂F₁₁]₂ is generated by a new synthetic approach, the oxidative carbonylation of Fe- (CO) ₅ in liquid antimony(V) fluoride, SbF₅. Its synthesis complements an earlier report¹ on the preparation of $[M(CO)₆]$ - $[Sb_2F_{11}]_2$, $M = Ru$ or Os, and allows a spectroscopic comparison of all three $[M(CO)₆]$ ²⁺ cations formed by the group 8 metals iron, ruthenium, and osmium.

Results and Discussion

Even though the complex cyanide anion $[Fe(CN)₆]^{4-}$, found in $K_4[Fe(CN)_6]$ ^{-3H₂O, has been known for a very long time²} and extensively studied, 3 the isoelectronic homoleptic carbonyl cation $[Fe(CO)₆]^{2+}$ has remained elusive, in spite of various attempts at its synthesis. Early claims of its formation by bromide abstraction from $Fe(CO)_4Br_2$ with the Lewis acid AlBr₃ at CO pressures of $300-400$ atm⁴ or by the postulated amine catalyzed disproportionation of Fe(CO)₅ to $[Fe(CO)_4]^{2-}$ and $[Fe$ $(CO)_{6}$ ^{2+ 5} have subsequently been found in error.⁶

A recent, very promising approach, the reductive carbonylation in liquid SbF_5 ,⁷ is found to be successful in the synthesis of the congeners $[M(CO)_6][Sb_2F_{11}]_2$, $M = Ru$ or Os, from the

- ^X Abstract published in *Ad*V*ance ACS Abstracts,* December 15, 1996.
- (1) Wang, C.; Bley, B.; Balzer-Jöllenbeck, G.; Lewis, A. R.; Siu, S. C.; Willner, H.; Aubke, F. *J. Chem. Soc., Chem. Commun.* **1995,** 2071.

- (4) Hieber, W.; Kruck, T. *Angew. Chem.* **1961,** *73*, 580.
- (5) Sternberg, H. W.; Friedel, A. R.; Shufler, S. L.; Wender, I. *J. Am. Chem. Soc.* **1955,** *77*, 2675.
- (6) Hieber, W.; Frey, V.; John, P. *Chem. Ber.* **1967**, *100*, 1961.

corresponding fluorosulfates, $M(SO_3F)_3$, according to

$$
2M(SO_3F)_3 + 16SbF_5 + 13CO \xrightarrow{1 \text{ atm of CO, SbF}_5} 2[M(CO)_6][Sb_2F_{11}]_2 + CO_2 + S_2O_5F_2 + 4Sb_2F_9(SO_3F) \quad (1)
$$

$$
M = Ru \text{ or } Os
$$

But the method fails for FeX_3 (X = Cl or SO₃F), and polymeric Fe[SbF₆]₂, which has a layer structure,⁸ is formed instead.

In order to avoid the formation of $Fe[SubF₆]$ ₂, the oxidative carbonylation of $Fe(CO)$ ₅ is attempted, with the assumption that most CO ligands will remain bound to Fe. It was found that by the use of AsF_5 as oxidizing agent, the reaction proceeds in a straightforward manner according to polymeric Fe[SbF₆]₂, which has a layer structu
instead.
In order to avoid the formation of Fe[SbF₆]₂
carbonylation of Fe(CO)₅ is attempted, with the a
most CO ligands will remain bound to Fe. It v
by the use of

Fe(CO)₅ + 5SbF₅ + AsF₅ + CO
$$
\xrightarrow[60-90 \degree C]{1 \text{ atm of CO, SbF}_5}
$$

[Fe(CO)₆][Sb₂F₁₁]₂ + AsF₃·SbF₅ (2)

 $AsF₃ obtained as byproduct is complexed by SbF₅ to a white,$ nonvolatile solid, of the suggested composition $\text{As}F_3$ 'SbF_{5.}^{9a} Removal from the reaction mixture requires repeated washing with liquid SO₂. The residue obtained after removal of all SO2 from the liquid phase is identified by IR spectroscopy as SO2'SbF5 9b which suggests a displacement reaction during washing. The product $[Fe(CO)₆][Sb₂F₁₁]$ ₂ is an off-white, moisture-sensitive solid of surprising thermal stability, at least up to 200 °C. The composition of the isolated product is determined by the mass balance of the reaction and by microanalysis.

Interesting is the outcome of synthetic reactions with $Cl₂$ as external oxidizing agent. $[Fe(CO)_6]^{2+}$ is formed according to

- (8) Gantar, D.; Leban, I.; Frlec, B.; Holloway, J. H. *J. Chem. Soc., Dalton Trans.* **1987,** 2379.
- (9) (a) Birchall, T.; Dean, P. A. W.; Valle, B. D.; Gillespie, R. J. *Can. J. Chem.* **1973,** *51*, 667. (b) Moore, J. W.; Baird, H. W.; Miller, H. B. *J. Am. Chem. Soc.* **1968**, *90*, 1358.

^{*} Authors to whom correspondence should be addressed.

[†] Universität Hannover.

[‡] The University of British Columbia.

⁽²⁾ Macquer, P. J. *Mem. Math. Phys.* **1752**, *2*, 87.

^{(3) (}a) Chadwick, B. M.; Sharpe, A. G. *Ad*V*. Inorg. Chem. Radiochem.* **1966,** *8*, 83. (b) Sharpe, A. G. *The Chemistry of Cyano Complexes of Transition Metals*; Academic Press: New York, 1976.

⁽⁷⁾ Wang, C.; Siu, S. C.; Hwang, G.; Bley, B.; Bodenbinder, M.; Bach, C.; Willner, H.; Aubke, F. *Eur. J. Inorg. Solid State Chem.* **1996**, *33*, 917.

[Fe(CO)₆][Sb₂F₁₁]₂
Fe(CO)₅ + Cl₂ + CO + 6SbF₅
$$
\frac{1 \text{ atm of CO}}{60-80 °C}
$$

[Fe(CO)₆][Sb₂F₁₁]₂ + 2SbF₄Cl (3)

but in addition the mass balance of the reaction and a sharp IR band at 2256 cm^{-1} , whose intensity increases with increasing $Cl₂$ excess over the stoichiometrically required amount, suggest the formation of $[Fe(CO)_6]^{3+}$. Support comes from the recently reported $[\text{Ir(CO)_6}][\text{Sb}_2\text{F}_{11}]_3^{10}$ where the IR asymmetric CO stretch (f_{1u}) is observed at 2254 cm⁻¹. Attempts to obtain a pure sample of $[Fe(CO)_{6}]$ [Sb₂F₁₁]₃ and to characterize the cation $[Fe(CO)₆]^{3+}$ more fully are currently underway.

The oxidative carbonylation to generate homoleptic carbonyl cations has a precedent in the oxidation of gold by UF_6 in anhydrous HF and in the presence of CO to give $[Au(CO)₂]$ - $[UF₆]¹¹$ The oxidative carbonylation in liquid SbF₅, with the help of external oxidizing agents as described here, increases the potential use of antimony(V) fluoride in carbonylation reactions.

The IR and Raman spectra of $[Fe(CO)_6][Sb_2F_{11}]_2$ are shown in Figure 1, and all vibrational data of the cation are compared with the spectra of $[M(CO)_6]^{2+}$, $M = Ru$ or Os,¹ in Table 1 together with the CO stretching force constants, $f_{\rm CO}$. The bands of the $[Sb_2F_{11}]^-$ anion, not listed here, are very similar to those found in $[Hg(CO)_2][Sb_2F_{11}]_2$ ¹² The tentative assignments are supported by the spectra of the ¹³CO isotopomers.

It is more difficult to obtain the isotopomer $[Fe^{(13}CO)_6]$ - $[Sb_2F_{11}]_2$ than $[M({}^{13}CO)_6][Sb_2F_{11}]_2$, $M = Ru$ or Os (see eq 1). The method chosen is the initial ^{13}CO enrichment of Fe(CO)₅ with Na[BH₄] as exchange promotor¹³ and the use of ¹³CO in the subsequent oxidative carbonylation. In the resulting mixture of isotopomers, the ¹³CO stretching modes of $[Fe^{(13}CO)_6]^{2+}$ are identified by comparison to the spectra of $[M({}^{13}CO)_6]^{2+}$, M = Ru or Os.1

As can be seen in Table 1, vibrational spectra for the three $[M(CO)₆]$ ²⁺ cations, M = Fe, Ru, or Os, are extremely similar in respect to band positions and intensities in particular in the CO stretching region. The three cations are evidently octahedral and the CO stretching force constant f_{CO} of 19.82×10^2 N m⁻¹ for $[Fe(CO)_6]^{2+}$, obtained by the Cotton-Kraihanzel method,¹⁴ suggests only insignificant metal to CO π -back-bonding.¹⁵ The CO stretching force constant in $[Ru(CO)_6]^{2+}$ has the same value, while f_{CO} in $[Os(\text{CO})_6]^{2+}$ is with 19.76 \times 10² N m⁻¹ slightly smaller.¹

The observed decrease of δ ⁽¹³C) NMR chemical shifts from 179 ppm for $[Fe(CO)₆]$ ²⁺ over 166 to 147 ppm for the corresponding Ru and Os hexacarbonyl cations is expected, since for the neutral hexacarbonyls $M(CO)_6$, $M = Cr$, Mo, or W, δ ⁽¹³C) decreases in a similar manner from 212 ppm over 204 to 192 ppm,¹⁶ while the force constants f_{CO} for all three molecules are nearly identical.17

- (10) Bach, C.; Willner, H.; Wang, C.; Rettig, S. J.; Trotter, J.; Aubke, F. *Angew. Chem.* **1996**, *108*, 2104; *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1974.
- (11) Adelhelm, M.; Bacher, W.; Höhne, E. G.; Jacob, E. *Chem. Ber.* 1991, *124*, 1559.
- (12) Bodenbinder, M.; Balzer-Jöllenbeck, G.; Willner, H.; Batchelor, R. J.; Einstein, F. W. B.; Wang, C.; Aubke, F. *Inorg. Chem.* **1996**, *35*, 82.
- (13) Bricker, J. C.; Payne, M. W.; Shore, S. G. *Organometallics* **1987**, *6*, 2545.
- (14) Cotton, F. A.; Kraihanzel, C. S. *J. Am. Chem. Soc.* **1962**, *84*, 4432.
- (15) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.; Aubke, F. *J. Am. Chem. Soc.* **1992,** *114*, 8972.
- (16) Mann, B. E. *J. Chem. Soc., Dalton Trans.* **1973**, 2012.
- (17) Jones, L. H. *Inorganic Vibrational Spectroscopy*; Marcel Dekker: New York, Vol. 1, 1971.

Figure 1. IR (a) and Raman (b) spectra of $[Fe(CO)_6][Sb_2F_{11}]_2$. Cation bands are marked.

Table 1. Vibrational Data in cm⁻¹ and CO Stretching Force Constants f_{CO} in N m⁻¹ × 10² for $[M(CO)_6][Sb_2F_{11}]_2$ $(M = Fe, Ru, Os)$

$[Fe(CO)6]$ -		[Ru(CO)6] $[Sb_2F_{11}]_2$ $[Sb_2F_{11}]_2$ $[Sb_2F_{11}]_2$		$[Os(CO)6]-$			
$_{\rm IR}$	Raman	\mathbb{R}			Raman IR Raman		intens intens intens intens intens intens assignment ^b
	2241 s 2204 s		2254° s 2190 m 2203° s 2169 s 2172^a vs		2199^a s 2190^a s		2259 ^{<i>a</i>} s v_1 A _{1g} [M(CO _{)6]} 2220 vs 2222 ^a vs 2218 ^a vs ν_3 E _g [M(CO) ₆] v_6 F _{1u} [M(CO) ₆] 2206 ^a s v_1' A _{1g} [M(¹³ CO) ₆] 2166 ^{<i>a</i>} vs v_3 ['] E _{<i>v</i>} [M(¹³ CO) ₆]
2155 s 558 m			2149^a s 2141^a s $557 s$ 562 s 348 w 382 yw				v_6 F _{1u} [M(¹³ CO) ₆] v_7 F _{1u} [M(CO) ₆] v_4 E _g [M(CO) ₆]
338 w		336 m 138 m		346 m 131 s			v_9 F _{1u} [M(CO) ₆] 132 s v_{11} F _{2g} [M(CO) ₆]
Stretching Force Constants f _{co}							
$M = Fe$			$M = Ru$			$M = Os$	
19.82			19.82			19.76	

^a Reference 1. *^b* Numbering of fundamentals from ref 17.

The ⁵⁷Fe Mössbauer spectrum of $[Fe(CO)₆][Sb₂F₁₁]$ ₂ at 80 and 200 K shows a single sharp line (δ -0.001(6) mm s⁻¹ relative to α-Fe at room temperature, $\Gamma = 0.258(9)$ mm s⁻¹ at 80 K). This observation suggests (a) the ground state of Fe^{II} is ${}^{1}A_{1g}$ corresponding to a 3d⁶ low spin configuration, (b) the environment around Fe is strictly octahedral, and (c) the electronic environment at the nucleus is slightly different from that of $K_4[Fe(CN)_6] \cdot 3H_2O$ which has an isomershift of -0.042 mm s^{-1} .¹⁸

Experimental Section

(a) Chemicals. Antimony(V) fluoride was obtained from Ato-Chem, North America, and purified by repeated distillation as described by us.^{7,12} Fe(CO)₅ was obtained from BASF (purity not stated) and used without further purification. $Cl₂$ (Baker Chemiekalien Gross-Gerau) and SO₂ (Matheson, Europe) were obtained from commercial sources. Sulfur dioxide was dried over P_4O_{10} . As F₅ was obtained by direct fluorination of elemental arsenic according to a literature method.¹⁹ AsF₅ was stored in preconditioned metal cylinders.

(19) Ruff, O.; Braida, A.; Bretschneider, O.; Menzel, W.; Plaut, H. *Z. Anorg. Allg. Chem.* **1932**, *206*, 52.

⁽¹⁸⁾ Danon, J. In *Chemical Applications of Mössbauer Spectroscopy*; Goldanskii, V. I., Herber, R. H., Eds.; Academic Press: New York, 1968; p 160.

(b) Instrumentation and Equipment. Our equipment to obtain FT-IR, FT-Raman, and 13C NMR-MAS spectra of solid samples has recently been described.12 Also described is a two-part reaction flask, used in the purification of $[Fe(CO)_6][Sb_2F_{11}]_2$ by washing and decanting with liquid SO_2 to remove AsF_3 'SbF₅.¹²

(c) Synthetic Reactions. All synthetic reactions were carried out in glass reactors (about 60 mL volume) fitted with Teflon stem valves (Young, London, U.K.) and Teflon-coated stirring bars. Gaseous and volatile reagents and products were measured in a vacuum line of known volume. Pressure measurements were made with a Setra capacity manometer, Type 280E (Setra Instruments, Acton, MA). Solid materials were manipulated inside an evacuable box (Mecaplex, Grenchen, Switzerland) filled with N_2 .

(i) Preparation of [Fe(CO)6][Sb2F11]2 with AsF5. A reactor was charged with 122 mg (0.6 mmol) of $Fe(CO)_5$. After the reactor was cooled to liquid N_2 temperature, 106 mg (0.6 mmol) of AsF₅, 1.4 g (7.3 mmol) of SbF₅, and 1.9 mmol CO were added by transfer in vacuo. The reaction mixture was allowed to warm to room temperature and stirred. The initial yellow color vanished within 2 h. After the volatiles were removed in vacuo, 1.14 g of an off-white solid remained. The byproduct AsF_3 ·SbF₅^{9a} was removed by repeated washing with SO₂.

(ii) Preparation of $[Fe(CO)_6][Sb_2F_{11}]_2$ with Cl_2 . A reactor was charged with 71 mg (0.36 mmol) of $Fe(CO)_5$. Without warming it to room temperature, 1.4 g (7.3 mmol) of SbF₅, 0.36 mmol of $Cl₂$, and 2.3 mmol of CO were added. After warming it to room temperature, the yellow reaction mixture was stirred for 1 h. The initial color had vanished. After all volatiles were removed, 0.46 g of an off-white solid remained. The weight was 12.9% higher than calculated for $[Fe(CO)_6][Sb_2F_{11}]_2$, possibly on account of incomplete $SbF₅$ removal.

 $[Fe(CO)_6][Sb_2F_{11}]_2$ is a white, extremely moisture-sensitive solid, which does not decompose when heated in a sealed tube to 200 °C. Anal. Calcd for $C_6O_6F_{22}FeSb_4$: C, 6.4; Fe, 4.9; Sb, 43.1. Found: C, 5.4; Fe, 4.2; Sb, 42.7. The sample for analysis was prepared by method (i).

Conclusion

With the synthesis and spectroscopic characterization of thermally stable $[Fe(CO)_6][Sb_2F_{11}]_2$ reported here, the existence range of predominantly *σ*-bonded, homoleptic carbonyl cations extends now to the middle of the 3d-transition series. Previously only unipositive carbonyl cations are known for 3d metals. For $Cu(I)$ (d¹⁰) the existence of cations of the type $[Cu(CO)_n]⁺$, with $n = 1, 2,$ or 3, has been suggested.^{20,21} The isoelectronic cation $[Mn(CO)_6]^+$, obtained as $[\text{AICL}_4]^-$ salt, is known since 1961,^{22a} but the $\overline{\nu}(CO)_{av}$ of 2121 cm^{-1 22b} indicates some degree of *π*-back-donation compared to \bar{v} (CO)_{av} of 2216 cm⁻¹ for [Fe- $(CO)_6$ ²⁺. The high thermal stability of $[Fe(CO)_6][Sb_2F_{11}]$ underscores once again the preeminent and unique role of $[Sb_2F_{11}]$ ⁻ as a counteranion^{12,23} for homoleptic metal carbonyl cations.

Acknowledgment. Financial support by the Deutsche Forschungsgemeinschaft (DFG) for this project is gratefully acknowledged. B.B. thanks the Fonds der Chemischen Industrie for a scholarship and F.A. is grateful to the Alexander v. Humboldt Foundation for a Research Award. We thank Mr. P. Borda (UBC) and Ms. H. Czichos (University of Hannover) for microanalysis and Prof. K. Wieghardt and Dr. E. Bill, Max-Planck-Institut für Strahlenchemie, Mülheim, Germany, for recording the ⁵⁷Fe Mössbauer spectrum of $[Fe(CO)₆][Sb₂F₁₁]$.

IC9608105

- (20) Desjardins, C. D.; Edwards, D. B.; Passmore, J*. Can. J. Chem.* **1979**, *57*, 2714.
- (21) Rack, J. J.; Webb, J. D.; Strauss, S. H. *Inorg. Chem.* **1996**, *35*, 277 and references therein.
- (22) (a) Fischer, E. O.; Fichtel, K.; O¨ fele, K. *Chem. Ber.* **1961**, *94*, 1200. (b) McLean, R. A. N. *Can. J. Chem.* **1974**, *52*, 213.
- (23) Zhang, D.; Rettig, S. J.; Trotter, J.; Aubke, F. *Inorg. Chem.* **1996**, *35*, 6113.